Questo libro esplora l'esperimento sociale di Auroville, dalla sua fondazione ad oggi, focalizzandosi sulla figura di Mirra Alfassa e Sri Aurobindo. Analizza la città nei suoi aspetti sociali, economici e politici, e presenta le esperienze degli italiani residenti, approfondendo temi come migrazione, identità e religione.
Marco Abate Knihy
Abate je uznávaný pro své hluboké příspěvky v oblasti dynamických systémů, diferenciální geometrie, komplexní analýzy a holomorfní dynamiky. Jeho práce se vyznačuje rigorózním přístupem a inovacemi, které posouvají hranice matematického poznání. Kromě své akademické kariéry se Abate angažuje v popularizaci matematiky. Organizuje cyklus přednášek pro studenty i veřejnost, aby osvětlil významné matematické objevy a jejich dopad. Prostřednictvím komiksů a populárně naučných pořadů přibližuje složitost matematiky širšímu publiku, čímž podněcuje zájem o tento fascinující obor.






Perché Nobel?
- 143 stránek
- 6 hodin čtení
È noto a tutti che i premi Nobel sono il riconoscimento più importante nel mondo in campo scientifico, letterario, economico e sociale. Molti meno ricordano invece chi abbia effettivamente vinto il premio Nobel ciascun anno; e, esclusi gli specialisti nel campo, veramente pochi conoscono il lavoro dei vincitori e sanno cosa hanno fatto di così importante da meritare l’ambito premio. Scopo di questo libro è proprio spiegare, soprattutto ai non esperti, il significato e l’importanza del lavoro dei vincitori dei Premi Nobel del 2007 (e di premi analoghi assegnati per la Matematica e per l’Informatica, rispettivamente il premio Abel e il premio Turing). Otto presentazioni agili e comprensibili, di alta divulgazione, che coprono argomenti il cui interesse e attualità è certificato dal Nobel: dai cambiamenti climatici alle cellule staminali, dalla chimica delle superfici a come funzionano gli hard disk, dai compilatori alla probabilità alla economia teorica a Doris Lessing.
This completely revised and updated edition of the one variable part of the author's classic older book "Iteration Theory of Holomorphic Maps on Taut Manifolds" presents the theory of holomorphic dynamical systems on hyperbolic Riemann surfaces from the very beginning of the subject up to the most recent developments. It is intended both as a reference book for the experts and as an accessible gateway to this beautiful theory for Master and Ph.D. students. It also contains extensive historical notes and references for further readings.
Holomorphic dynamical systems
- 342 stránek
- 12 hodin čtení
The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ? eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.
Real methods in complex and CR geometry
- 219 stránek
- 8 hodin čtení
The geometry of real submanifolds in complex manifolds and the analysis of their mappings belong to the most advanced streams of contemporary Mathematics. In this area converge the techniques of various and sophisticated mathematical fields such as P. D. E. s, boundary value problems, induced equations, analytic discs in symplectic spaces, complex dynamics. For the variety of themes and the surprisingly good interplaying of different research tools, these problems attracted the attention of some among the best mathematicians of these latest two decades. They also entered as a refined content of an advanced education. In this sense the five lectures of this volume provide an excellent cultural background while giving very deep insights of current research activity.