Das vorliegende Buch beschäftigt sich mit der Struktur der Solomon-Tits-Algebren der symmetrischen Gruppen motiviert durch Forschungsergebnisse von Manfred Schocker zur Modulstruktur dieser Algebren. Mit Struktur sind hier gleichsam drei Strukturen gemeint: die assoziative, die der zugehörigen Einheitengruppe und die der assoziierten Lie-Algebra. Im Laufe des Buches wird verdeutlicht, dass diese Strukturen in Beziehung stehen und deren Analyse in dem allgemeineren Rahmen von assoziativen Algebren mit selbstzentralem Radikalkomplement durchgeführt werden kann. Konkret werden u. a. folgende Thematiken analysiert: Dimensionsformeln, Zusammenhang zu Duo-Algebren, Selbstzentralität der Radikalkomplemente, Cartan-Teilalgebren, Sylow-Untergruppen, Hall-Untergruppen, Carter-Untergruppen, Stagnation von Zentralreihen, auflösbare Stufen und Nilpotenzklassen, Nilradikal und Fittinguntergruppe, halbeinfache und einfache Teilstrukturen, Antiautomorphismen sowie irreduzible Charakterwerte.
Sven Wirsing Pořadí knih



- 2013
- 2012
Unter den Voraussetzungen des Satzes von Wedderburn-Malcev wird die Existenz eines Radikalkomplementes garantiert. Deshalb stellen sich sofort zwei Fragen: Wie berechnet man ein Radikalkomplement und wie stellt man ein Element der Algebra als Summe aus einem Radikalelement und aus einem Element eines Radikalkomplementes dar? Diese Fragen beantworten wir für kommutative und für auflösbare Algebren. Die Menge der separablen Elemente spielt dabei ebenso wie eine verallgemeinerte Konstruktion der Jordan-Zerlegung eine zentrale Rolle. Wir illustrieren die Ergebnisse an verallgemeinerten Quaternionenalgebren.
- 2012
In dieser Arbeit studieren wir Einheitengruppen modularer Gruppenalgebren KG. Für die Untersuchung ihres Zentrums entwickeln wir das Konzept der sogenannten endvertauschbaren Anordnung von Algebren-Elementen. Daraus leiten wir auf einfache Weise ab, wie der Exponent des Zentrums allein durch Berechnungen innerhalb der Gruppe G ermittelt werden kann. Anschließend bestimmen wir diesen zum Beispiel für direkte Produkte mit vereinigten zentralen Untergruppen und für Kranzprodukte und geben eine Beschreibung der Gruppen an, für die jener Exponent extremal wird. Das Konzept der endvertauschbaren Anordnung erlaubt neben der Berechnung des Exponenten von Z(rad(KG)) auch (im Falle eines endlichen Körpers K) die Ermittlung der Invarianten dieser abelschen p-Gruppe. Für diese geben wir zwei Beschreibungen an.