Exploring the intersection of phenomenology and the exact sciences, this collection of studies delves into key themes in logic and mathematics from the early twentieth century. Mancosu examines the nature of truth, logical consequence, and mathematical intuition, offering fresh insights into these foundational concepts. His work highlights the evolving understanding of logic and mathematics during this pivotal period, making significant contributions to contemporary discussions in the field.
Paolo Mancosu Knihy
Paolo Mancosu je profesor filozofie, jehož práce se zaměřuje na filozofii a historii matematiky a matematickou logiku. Jeho současné bádání se soustředí na neologicismus a filozofii matematické praxe. Zkoumá hluboké propojení mezi abstraktním myšlením a jeho uplatněním v reálném světě, čímž čtenářům odhaluje podstatu matematických principů. Jeho práce jsou určeny pro ty, kteří hledají pronikavý vhled do základů logiky a matematiky.




Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century
- 286 stránek
- 11 hodin čtení
Provides an account of the relationship between mathematical advances of the 17th century and the philosophy of mathematics of the period. Starting with the Renaissance debates on the certainty of mathematics, the book explores the issues raised by the emergence of these mathematical techniques.
Moscow Has Ears Everywhere: New Investigations on Pasternak and Ivinskaya Volume 698
- 396 stránek
- 14 hodin čtení
The post-Nobel history of Boris Pasternak and his partner Olga Ivinskaya reveals the enduring conflict with Soviet Communists surrounding the publication of Doctor Zhivago. Paolo Mancosu's book delves into the complexities of their lives and the repercussions they faced even after Pasternak received the Nobel Prize, highlighting the struggles against censorship and the impact on their personal and professional existence.
An Introduction to Proof Theory
- 432 stránek
- 16 hodin čtení
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding.