Photoreceptor type-specific electroretinography in inherited retinal disorders ; with 14 tables
Autoři
Parametry
Kategorie
Více o knize
Over the last decade, there has been renewed interest in human retinal electrophysiology as a technique for studying both the normal human retina as well as how retinal function is affected by disease. The electrical trace recorded as an electroretinogram (ERG) is initiated by light absorption in the (rod and cone) photoreceptors that subsequently activates post-receptoral pathways. It has been difficult to separately investigate ERG signals that are driven by one of the three different cone photoreceptor subtypes, or to distinguish ERG activity derived from separate post-receptoral rod pathways. In this book, new methodological approaches are presented to overcome these difficulties. The selected studies reported herein use novel ERG techniques that have advanced our understanding of both retinal physiology and pathophysiology and should ultimately help to develop better diagnostic tools.
Nákup knihy
Photoreceptor type-specific electroretinography in inherited retinal disorders ; with 14 tables, Hendrik Peter Nicolas Scholl
- Jazyk
- Rok vydání
- 2005
Doručení
Platební metody
2021 2022 2023
Navrhnout úpravu
- Titul
- Photoreceptor type-specific electroretinography in inherited retinal disorders ; with 14 tables
- Jazyk
- anglicky
- Autoři
- Hendrik Peter Nicolas Scholl
- Vydavatel
- Books on Demand GmbH
- Rok vydání
- 2005
- ISBN10
- 3833419709
- ISBN13
- 9783833419706
- Kategorie
- Zdraví / Medicína / Lékařství
- Anotace
- Over the last decade, there has been renewed interest in human retinal electrophysiology as a technique for studying both the normal human retina as well as how retinal function is affected by disease. The electrical trace recorded as an electroretinogram (ERG) is initiated by light absorption in the (rod and cone) photoreceptors that subsequently activates post-receptoral pathways. It has been difficult to separately investigate ERG signals that are driven by one of the three different cone photoreceptor subtypes, or to distinguish ERG activity derived from separate post-receptoral rod pathways. In this book, new methodological approaches are presented to overcome these difficulties. The selected studies reported herein use novel ERG techniques that have advanced our understanding of both retinal physiology and pathophysiology and should ultimately help to develop better diagnostic tools.