Knihobot

Principal manifolds for data visualization and dimension reduction

Hodnocení knihy

3,5(2)Ohodnotit

Parametry

  • 334 stránek
  • 12 hodin čtení

Více o knize

The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described. Presentation of algorithms is supplemented by case studies. The volume ends with a tutorial PCA deciphers genome.

Nákup knihy

Principal manifolds for data visualization and dimension reduction, Aleksandr N. Gorban

Jazyk
Rok vydání
2008
product-detail.submit-box.info.binding
(měkká)
Jakmile se objeví, pošleme e-mail.

Doručení

Platební metody

3,5
Dobrá
2 Hodnocení

Tady nám chybí tvá recenze.