Knihobot

Self-adaptive heuristics for evolutionary computation

Hodnocení knihy

4,0(2)Ohodnotit

Parametry

  • 181 stránek
  • 7 hodin čtení

Více o knize

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.

Vydání

Nákup knihy

Self-adaptive heuristics for evolutionary computation, Oliver Kramer

Jazyk
Rok vydání
2008
Jakmile se objeví, pošleme e-mail.

Doručení

Platební metody

4,0
Velmi dobrá
2 Hodnocení

Tady nám chybí tvá recenze.