Preventive Biomechanics
Autoři
Parametry
Kategorie
Více o knize
How can we optimize a bedridden patient’s mattress? How can we make a passenger seat on a long distance flight or ride more comfortable? What qualities should a runner’s shoes have? To objectively address such questions using engineering and scientific methods, adequate virtual human body models for use in computer simulation of loading scenarios are required. The authors have developed a novel method incorporating subject studies, magnetic resonance imaging, 3D-CAD-reconstruction, continuum mechanics, material theory and the finite element method. The focus is laid upon the mechanical in vivo-characterization of human soft tissue, which is indispensable for simulating its mechanical interaction with, for example, medical bedding or automotive and airplane seating systems. Using the examples of arbitrary body support systems, the presented approach provides visual insight into simulated internal mechanical body tissue stress and strain, with the goal of biomechanical optimization of body support systems. This book is intended for engineers, manufacturers and physicians and also provides students with guidance in solving problems related to support system optimization.
Nákup knihy
Preventive Biomechanics, Gerhard Silber
- Jazyk
- Rok vydání
- 2016
Doručení
Platební metody
2021 2022 2023
Navrhnout úpravu
- Titul
- Preventive Biomechanics
- Jazyk
- anglicky
- Autoři
- Gerhard Silber
- Vydavatel
- Springer
- Rok vydání
- 2016
- ISBN10
- 3662518791
- ISBN13
- 9783662518793
- Kategorie
- Zdraví / Medicína / Lékařství
- Anotace
- How can we optimize a bedridden patient’s mattress? How can we make a passenger seat on a long distance flight or ride more comfortable? What qualities should a runner’s shoes have? To objectively address such questions using engineering and scientific methods, adequate virtual human body models for use in computer simulation of loading scenarios are required. The authors have developed a novel method incorporating subject studies, magnetic resonance imaging, 3D-CAD-reconstruction, continuum mechanics, material theory and the finite element method. The focus is laid upon the mechanical in vivo-characterization of human soft tissue, which is indispensable for simulating its mechanical interaction with, for example, medical bedding or automotive and airplane seating systems. Using the examples of arbitrary body support systems, the presented approach provides visual insight into simulated internal mechanical body tissue stress and strain, with the goal of biomechanical optimization of body support systems. This book is intended for engineers, manufacturers and physicians and also provides students with guidance in solving problems related to support system optimization.