Bioinspired organometallic analogues of iron-sites in metalloproteins
Autoři
Parametry
Kategorie
Více o knize
Metalloproteins with iron-sites are essential for almost all living organisms and responsible for a large number of biological redox reactions. To uncover the mechanisms of enzymes and cofactors, bioinorganic chemistry aims to provide low-molecular weight analogues. In this dissertation, the iron-sites of [2Fe–2S] proteins, [NiFe] hydrogenases and mononuclear oxygenases served as models for bioinspired analogues coordinated by N-heterocyclic carbene (NHC) ligands. Although abiological, NHC ligands have been shown to be capable of stabilizing otherwise labile inorganic intermediates which are crucial for mechanistic understanding. Using this approach, the isolation of the first organometallic oxoiron(IV) complex, mimicking the oxygenase motif, was achieved. Studies on the structural and magnetic characteristics, substrate reactivity, and the decomposition pathway are provided.
Nákup knihy
Bioinspired organometallic analogues of iron-sites in metalloproteins, Steffen Meyer
- Jazyk
- Rok vydání
- 2015
Doručení
Platební metody
2021 2022 2023
Navrhnout úpravu
- Titul
- Bioinspired organometallic analogues of iron-sites in metalloproteins
- Jazyk
- anglicky
- Autoři
- Steffen Meyer
- Vydavatel
- Cuvillier
- Rok vydání
- 2015
- ISBN10
- 3954049201
- ISBN13
- 9783954049202
- Kategorie
- Skripta a vysokoškolské učebnice
- Anotace
- Metalloproteins with iron-sites are essential for almost all living organisms and responsible for a large number of biological redox reactions. To uncover the mechanisms of enzymes and cofactors, bioinorganic chemistry aims to provide low-molecular weight analogues. In this dissertation, the iron-sites of [2Fe–2S] proteins, [NiFe] hydrogenases and mononuclear oxygenases served as models for bioinspired analogues coordinated by N-heterocyclic carbene (NHC) ligands. Although abiological, NHC ligands have been shown to be capable of stabilizing otherwise labile inorganic intermediates which are crucial for mechanistic understanding. Using this approach, the isolation of the first organometallic oxoiron(IV) complex, mimicking the oxygenase motif, was achieved. Studies on the structural and magnetic characteristics, substrate reactivity, and the decomposition pathway are provided.