Knihobot
Knihu momentálně nemáme skladem

Moving Interfaces and Quasilinear Parabolic Evolution Equations

Autoři

Více o knize

In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations offluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.

Parametry

ISBN
9783319801964
Nakladatelství
Birkhäuser

Kategorie

Vydání

Nákup knihy

Kniha aktuálně není skladem.