Managing intermittent demand
Autoři
Parametry
Kategorie
Více o knize
This work aims to increase the service level and to reduce the inventory costs by combining the forecast and inventory model into one consistent forecast-based inventory model. This new model is based on the prediction of the future probability distribution by assuming an integer-valued autoregressive process as demand process. The developed algorithms can be used to identify, estimate, and predict the demand as well as optimize the inventory decision of intermittent demand series. In an extensive simulation study the new model is compared with a wide range of conventional forecast/inventory model combinations. By using the consistent approach, the mean inventory level is lowered whereas the service level is increased. Additionally, a modern multi-criteria inventory classification scheme is presented to distinguish different demand series clusters.
Nákup knihy
Managing intermittent demand, Torben Engelmeyer
- Jazyk
- Rok vydání
- 2016
Doručení
Platební metody
2021 2022 2023
Navrhnout úpravu
- Titul
- Managing intermittent demand
- Jazyk
- anglicky
- Autoři
- Torben Engelmeyer
- Vydavatel
- Springer Gabler
- Rok vydání
- 2016
- ISBN10
- 3658140615
- ISBN13
- 9783658140618
- Kategorie
- Skripta a vysokoškolské učebnice
- Anotace
- This work aims to increase the service level and to reduce the inventory costs by combining the forecast and inventory model into one consistent forecast-based inventory model. This new model is based on the prediction of the future probability distribution by assuming an integer-valued autoregressive process as demand process. The developed algorithms can be used to identify, estimate, and predict the demand as well as optimize the inventory decision of intermittent demand series. In an extensive simulation study the new model is compared with a wide range of conventional forecast/inventory model combinations. By using the consistent approach, the mean inventory level is lowered whereas the service level is increased. Additionally, a modern multi-criteria inventory classification scheme is presented to distinguish different demand series clusters.