Neuro-Fuzzy-Modellierung zur umfassenden Prozessüberwachung am Beispiel des Ultraschallschweißens von Kunststoffteilen
Autoři
Více o knize
In Deutschland rechnet sich eine Fertigung oft nur noch für komplexe Produkte. Die benötigten Fertigungsprozesse sind zunehmend automatisiert und verkettet. In gleichem Maße steigt der Bedarf an Systemen zur Prozessüberwachung. Diese Arbeit befasst sich mit dem Aufbau eines Prozessüberwachungssystems auf der Basis von erfassten Sensordaten aus dem Fertigungsprozess. Einerseits ermöglicht das System eine Qualitätsprognose. Andererseits können geänderte oder unbekannte Zustände, die ihre Ursache in Veränderungen im überwachten Prozess oder in Prozessen der vorausgehenden Prozesskette haben können, erkannt werden. Kernelement dabei ist die Prozessmodellierung auf Basis von 'general regression neuro-fuzzy networks' (GRNFN), welche klassische Neuronale Netze mit Elementen von Fuzzy-Systemen verbinden. Die Eigenschaften der Modellstruktur werden detailiert untersucht. Anschließend werden die GRNFN-Modelle um einige neue Fähigkeiten erweitert. So ist es möglich, neben dem sonst auf Versuchsdaten basierenden Trainingsprozess auch vorhandenes Expertenwissen in Form von Fuzzy-Regeln direkt zu integrieren. Des Weiteren werden Indikatoren zum Erkennen unbekannter Zustände erarbeitet. Durch systematische Versuchsreihen sowie die Analyse von Signalvarianzen können Kenngrößen abgeleitet werden, welche in Form der sogenannten Zustandsvektoren einen Fingerabdruck für jeden Fertigungszyklus bilden. Zudem werden verschiedene Methoden beschrieben, die der Optimierung der erzielbaren Modellgüte dienen. Am Beispiel des Ultraschallschweißens wird das entwickelte System zur Prozessüberwachung sowohl an einem speziell entwickelten Probekörper als auch an Praxisbauteilen verifiziert und die Leistungsfähigkeit nachgewiesen. Neben der Prognose der Schweißnahtqualität können auch Änderungen des Werkstoffs, Variationen des vorgelagerten Spritzgießprozesses sowie Veränderungen des Feuchtegehalts, die auf eine veränderte Lagerung zurückzuführen sind, sicher erkannt werden.