Knihu momentálně nemáme skladem
Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications
Habilitationsschrift
Autoři
304 stránek
Více o knize
The thesis explores the optimal Bayesian filtering problem by focusing on Gaussian distributions, enabling the development of computationally efficient algorithms. It addresses three specific scenarios: filtering using only Gaussian distributions, employing Gaussian mixture filtering for handling strong nonlinearities, and utilizing Gaussian process filtering in data-driven contexts. For each scenario, the author derives effective algorithms and demonstrates their application to real-world challenges, highlighting the practical implications of these methods in various domains.
Varianta knihy
2015, měkká
Nákup knihy
Jakmile ji vyčmucháme, pošleme vám e-mail.