Knihobot

Missing the Random Effect

When the Parameter Space Is Expanding

Autoři

Parametry

  • 152 stránek
  • 6 hodin čtení

Více o knize

The book delves into the implications of violating key assumptions in Maximum Likelihood estimation, focusing on cases where the true model is a mixed effect model while the working model is a fixed effect model with increasing parameter dimensions. It establishes conditions for the convergence of the Maximum Likelihood Estimator (MLE) to a normal distribution and introduces a robust variance estimator to address bias in sample variance. Additionally, it critiques automatic model selection methods and presents empirical studies to support theoretical findings in generalized linear models.

Nákup knihy

Missing the Random Effect, Ru Chen

Jazyk
Rok vydání
2012
product-detail.submit-box.info.binding
(měkká)
Jakmile se objeví, pošleme e-mail.

Doručení

Platební metody

Nikdo zatím neohodnotil.Ohodnotit