Knihu momentálně nemáme skladem
Towards Optimally Diverse Randomized Ensembles of Neural Networks
Autoři
136 stránek
Více o knize
Focusing on ensemble learning, this work highlights the effectiveness of combining diverse neural network classifiers to achieve improved accuracy over single models. It examines how randomizing neural network parameters can create diverse ensembles, enhancing generalization. By employing a sampling strategy akin to Random Forests, the study aims to foster disagreement among network members. Experimental findings reveal that while inducing diversity in ensembles can be beneficial, it does not always guarantee accuracy improvements, making this research valuable for enthusiasts of ensemble methods and neural networks.
Varianta knihy
2017, měkká
Nákup knihy
Jakmile ji vyčmucháme, pošleme vám e-mail.