Přes Balíkovnu doručujeme za 49 Kč

Knihobot
Knihu momentálně nemáme skladem

Hierarchical Relative Entropy Policy Search

An Information Theoretic Learning Algorithm in Multimodal Solution Spaces for Real Robots

Autoři

68 stránek

Více o knize

The book explores the significance of hierarchical structures in enhancing scalability and performance in motor skill tasks. It introduces the concept of a "mixed option policy," where a gating network selects which option to execute, followed by an option-policy that determines the action. This hierarchical approach enables the learning of multiple solutions to problems. The algorithm is grounded in an innovative information theoretic policy search method that effectively manages the exploitation-exploration trade-off, minimizing information loss during policy updates.

Parametry

ISBN
9783639475999
Nakladatelství
AV Akademikerverlag

Kategorie

Varianta knihy

2014, měkká

Nákup knihy

Jakmile ji vyčmucháme, pošleme vám e-mail.