Knihobot

Bart De Bruyn

    Near polygons
    An Introduction to Incidence Geometry
    • An Introduction to Incidence Geometry

      • 384 stránek
      • 14 hodin čtení

      This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end of the book. This book is aimed at graduate students and researchers in the fields of combinatorics and incidence geometry.

      An Introduction to Incidence Geometry
    • Near polygons

      • 263 stránek
      • 10 hodin čtení

      Near polygons were introduced about 25 years ago and studied intensively in the 1980s. In recent years the subject has regained interest. This monograph gives an extensive overview of the basic theory of general near polygons. The first part of the book includes a discussion of the classes of dense near polygons, regular near polygons, and glued near polygons. Also valuations, one of the most important tools for classifying dense near polygons, are treated in detail. The second part of the book discusses the classification of dense near polygons with three points per line. The book is self-contained and almost all theorems are accompanied with proofs. Several new results are presented. Many known results occur in a more general form and the proofs are often more streamlined than their original versions. The volume is aimed at advanced graduate students and researchers in the fields of combinatorics and finite geometry.

      Near polygons