Dieses Lehrbuch bietet eine Einführung in Diskretisierungsmethoden für partielle Differentialgleichungen. Im Mittelpunkt steht das Finite-Element-Verfahren, aber es werden auch Finite-Differenzen- und Finite-Volumen-Verfahren behandelt. Basierend auf einer mathematisch präzisen Darstellung von Verfahren und ihrer Theorie spannt der Text den Rahmen bis hin zur Finite-Element-Implementierung. Dies beinhaltet eine Einführung in moderne Entwicklungen wie Multilevel- oder adaptive Verfahren. Das Spektrum der behandelten Differentialgleichungen reicht von linearen elliptischen Randwertaufgaben bis zu - auch konvektionsdominierten - nichtlinearen parabolischen Problemen. Diese werden jeweils durch Modelle aus einem spezifischen Anwendungsgebiet illustriert. Das Lehrbuch entspricht im Umfang etwa einer einsemestrigen Veranstaltung mit Ergänzungen und wendet sich an Studierende der Mathematik und der Ingenieur- oder Naturwissenschaften nach dem Vordiplom.
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in - search and teaching, has led to the establishment of the series Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as nume- cal and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and to encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mat- matical Sciences (AMS) series, which will focus on advanced textbooks and research-level monographs.
Eine Einführung mit integrierter Anwendung der Programmiersprache Python
475 stránek
17 hodin čtení
Sie möchten eventuell Mathematik studieren, wissen aber noch nicht, was wirklich auf Sie zukommt? Im ersten Studienjahr des Mathematikstudiums stellt das hohe Maß an Rigorosität und Abstraktion oft eine große Hürde dar - trotz der deutlichen inhaltlichen Überlappungen mit der Schulmathematik. Häufig liegt das an einer Schwerpunktverschiebung weg vom “Rechnen” hin zum Verstehen und Entwickeln von Mathematik. Dieses Buch führt Leser*innen in die wissenschaftlich-mathematische Denkweise an Universitäten ein, ohne dabei die Schulmathematik zu wiederholen. Informatikstudent*innen erhalten darüber hinaus eine Basis für das Verständnis der Konzepte des eigenen Faches und einen algorithmischen Zugang zu der oft nur als Werkzeug verstandenen Mathematik. Der Text ist insbesondere zum Selbststudium gedacht, mit vielen Programmierbeispielen in Python und zahlreichen Übungsaufgaben inkl. allen zugehörigen Lösungen und Programmcodes. Das Buch gliedert sich in zwei Teile. Im ersten Teil wird in die Grundlagen des logischen Arbeitens eingeführt: Mathematik hat mit Logik zu tun, aber wie genau und was ist Logik? Was ist die Basis für mathematisches Denken, wann sind mathematische Gedankengänge präzise und wie drückt man sie aus und schreibt sie auf? Im zweiten Teil geht es um die Frage, was Zahlen eigentlich sind und woher sie kommen. Von den natürlichen über die ganzen und rationalen Zahlen führt der Weg zu den reellen Zahlen, die sich meist als Dezimalzahl nicht mehr exakt hinschreiben, sondern nur noch beliebig genau approximieren lassen. Solche Rechenverfahren lässt man besser Computer ausführen, daher wird parallel zur Mathematik auch in das Programmieren mit Python eingeführt. Alle entwickelten Algorithmen, angefangen von der Definition einer Addition durch einfaches Hochzählen bis hin zur beliebig genauen Approximation der Kreiszahl π, werden damit realisiert. Der Leser erhält so neben einer soliden Einführung in die Grundlagen der Mathematik auch das notwendige Handwerkszeug für programmiertechnische Anwendungen.
Dieser Aufgabenband bietet Studienanfängern einen neuen Zugang zum umfangreichen Stoff der Linearen Algebra: Das Buch enthält ausführliche Lösungsvorschläge für alle Aufgaben aus dem zugrunde liegenden Lehrbuch der Autoren, wobei aber ausgewählte Übungen mehrfach aufgegriffen und aus einem jeweils neuen Blickwinkel betrachtet werden, wenn sich das Stoffverständnis weiterentwickelt hat. Dadurch kann der Leser die Inhalte der Vorlesung leichter nachvollziehen und sich die Lerninhalte, an den Aufgaben orientiert, selbst erarbeiten. Hierbei werden auch fundamentale Aspekte des Gebiets sowie inner- und außermathematische Auswirkungen der Ergebnisse deutlicher.
Ziel der Linearen Algebra ist die Einübung in die Theorie und Anwendung linearer Strukturen. Der heutigen Bedeutung der Linearen Algebra als grundlegendes Werkzeug und Sprache für fast alle Teile der Mathematik entsprechend wurden die Inhalte bewußt breit gefasst und vernetzt: Aspekte der affinen Geometrie (Lehramt), unendlich-dimensionale Vektorräume, Spektralanalyse und lineare Differentialgleichungen (Physik), allgemeine K-Vektorräume sowie algebraische Strukturen (Algebra), die Anfänge der linearen und quadratischen Optimierung (Wirtschaftsmathematik) und die LR-Zerlegung, Pseudoinverse und Singulärwertzerlegung (Numerische Mathematik und Optimierung). Die erarbeitete Theorie und Algorithmik wird durchgängig mit innermathematischen Themen wie auch mit realen Anwendungen verbunden. Eine klare optische Struktur der Inhalte ermöglicht es dem Leser, den Kerntext von weiterführenden Bemerkungen leicht zu unterscheiden und somit das Buch als Lern- , Arbeits- wie auch als Nachschlagewerk zu benutzen.
Transport und Sorption gelöster Stoffe in porösen Medien sind von fundamentaler Bedeutung in verschiedenen Gebieten, von analytischer Chemie und chemischer Verfahrenstechnik zu Bodenkunde und Hydrologie. Die vorliegende Arbeit entwickelt ein allgemeines mathematisches Modell in Form eines Systems aus nichtlinearen parabolischen und gewöhnlichen Differentialgleichungen. Die typische Form von Adsorptionsisothermen hat Singularitäten in den Nichtlinearitäten des Systems zur Folge, sogenannte Degeneration. Nach grundsätzlichen Fragen (eindeutige Existenz, Stabilität, Grenzverhalten) werden für eine Raumdimension die qualitativen Eigenschaften von Lösungen untersucht. Nichtlineare Struktur und Degeneration bedingen laufende Wellen und die (physikalisch korrekte) Existenz scharfer Konzentrationsfronten. Numerische Simulationen schließen die Arbeit ab.