Die Nullstellenverteilung von rationalen Funktionen
Autoři
Parametry
Více o knize
Diskrepanzsätze für die Nullstellenverteilung eines Polynoms gibt es seit Mitte des 20. Jahrhunderts. Darin wird die maximale Abweichung des normalisierten Nullstellenzählmaÿes eines Polynoms von der Gleichgewichtsverteilung einer Jordankurve abgeschätzt. Diese Diskrepanzaussagen sind eng verknüpft mit der Frage, unter welchen Voraussetzungen die Nullstellenverteilung einer Folge von Polynomen schwach-stern gegen die Gleichgewichtsverteilung einer Jordankurve konvergiert. Seit einigen Jahren gibt es auch Aussagen zur Schwach-Stern- Konvergenz der Nullstellenverteilung einer Folge rationaler Funktionen gegen ein Maÿ, das von der Lage ihrer Polstellen bestimmt wird. Deshalb stellte sich die Aufgabe, auch für rationale Funktionen sinnvolle Diskrepanzsätze zu beweisen. Die Hauptergebnisse dieser Arbeit sind Diskrepanzsätze für die Nullstellenverteilung einer rationalen Funktion R für geschlossene Jordankurven und für Jordanbögen. Hierbei ist die Jordankurve bzw. der Jordanbogen eine Zusammenhangskomponente des Randes eines Gebietes D. In einer Umgebung der Kurve bzw. des Bogens wird dann das absolute Nullstellenzählmaÿ von R mit der Summe aus den harmonischen Maÿen der Polstellen von R in D verglichen. Die neuen Diskrepanzsätze verallgemeinern und verschärfen sowohl bisherige Aussagen zur Schwach-Stern-Konvergenz des Nullstellenzählmaÿes von Folgen rationaler Funktionen als auch bekannte Diskrepanzsätze für Polynome.
Nákup knihy
Die Nullstellenverteilung von rationalen Funktionen, Regina Fieger
- Jazyk
- Rok vydání
- 2013
Doručení
Platební metody
2021 2022 2023
Navrhnout úpravu
- Titul
- Die Nullstellenverteilung von rationalen Funktionen
- Jazyk
- německy
- Autoři
- Regina Fieger
- Vydavatel
- Shaker
- Rok vydání
- 2013
- ISBN10
- 3844017666
- ISBN13
- 9783844017663
- Série
- Berichte aus der Mathematik
- Kategorie
- Skripta a vysokoškolské učebnice
- Anotace
- Diskrepanzsätze für die Nullstellenverteilung eines Polynoms gibt es seit Mitte des 20. Jahrhunderts. Darin wird die maximale Abweichung des normalisierten Nullstellenzählmaÿes eines Polynoms von der Gleichgewichtsverteilung einer Jordankurve abgeschätzt. Diese Diskrepanzaussagen sind eng verknüpft mit der Frage, unter welchen Voraussetzungen die Nullstellenverteilung einer Folge von Polynomen schwach-stern gegen die Gleichgewichtsverteilung einer Jordankurve konvergiert. Seit einigen Jahren gibt es auch Aussagen zur Schwach-Stern- Konvergenz der Nullstellenverteilung einer Folge rationaler Funktionen gegen ein Maÿ, das von der Lage ihrer Polstellen bestimmt wird. Deshalb stellte sich die Aufgabe, auch für rationale Funktionen sinnvolle Diskrepanzsätze zu beweisen. Die Hauptergebnisse dieser Arbeit sind Diskrepanzsätze für die Nullstellenverteilung einer rationalen Funktion R für geschlossene Jordankurven und für Jordanbögen. Hierbei ist die Jordankurve bzw. der Jordanbogen eine Zusammenhangskomponente des Randes eines Gebietes D. In einer Umgebung der Kurve bzw. des Bogens wird dann das absolute Nullstellenzählmaÿ von R mit der Summe aus den harmonischen Maÿen der Polstellen von R in D verglichen. Die neuen Diskrepanzsätze verallgemeinern und verschärfen sowohl bisherige Aussagen zur Schwach-Stern-Konvergenz des Nullstellenzählmaÿes von Folgen rationaler Funktionen als auch bekannte Diskrepanzsätze für Polynome.