![](/images/blank-book/blank-book.1920.jpg)
Více o knize
Dieses studentenerprobte Lehrbuch stellt die Finite-Elemente-Methode (FEM) als ein allgemeines numerisches Approximationsverfahren für partielle Differentialgleichungen mit einem Fokus auf die lineare Elastostatik vor. Neben dem systematischen Vorgehen zur Erstellung von Finite Elementen und dem daraus resultierenden Gleichungssystem aus den physikalischen Problemstellungen mithilfe von Ansatzfunktionen wird die Konsequenz dieser Diskretisierung aufgezeigt. Diese umfasst die Phänomene des „Locking“ und des „Hourglassing“. Zur praktischen Berechnung einer approximativen Lösung werden Verfahren vorgestellt, die für die computergestützte Berechnung benötigt werden, wie z. B. das isoparametrische Konzept und die numerische Integration. Abschließend wird die Berechnung abgeleiteter Größen erläutert und ihre Signifikanz für die Bewertung der Berechnungsergebnisse dargelegt. Etliche begleitende Beispielaufgaben mit Lösungen tragen zum Verständnis der Theorie bei.
Nákup knihy
Kompaktkurs finite Elemente für Einsteiger, Manfred Hahn
- Jazyk
- Rok vydání
- 2018
Doručení
Platební metody
Navrhnout úpravu
- Titul
- Kompaktkurs finite Elemente für Einsteiger
- Jazyk
- německy
- Autoři
- Manfred Hahn
- Vydavatel
- Springer
- Rok vydání
- 2018
- ISBN10
- 3658227745
- ISBN13
- 9783658227746
- Série
- Lehrbuch
- Kategorie
- Učebnice
- Anotace
- Dieses studentenerprobte Lehrbuch stellt die Finite-Elemente-Methode (FEM) als ein allgemeines numerisches Approximationsverfahren für partielle Differentialgleichungen mit einem Fokus auf die lineare Elastostatik vor. Neben dem systematischen Vorgehen zur Erstellung von Finite Elementen und dem daraus resultierenden Gleichungssystem aus den physikalischen Problemstellungen mithilfe von Ansatzfunktionen wird die Konsequenz dieser Diskretisierung aufgezeigt. Diese umfasst die Phänomene des „Locking“ und des „Hourglassing“. Zur praktischen Berechnung einer approximativen Lösung werden Verfahren vorgestellt, die für die computergestützte Berechnung benötigt werden, wie z. B. das isoparametrische Konzept und die numerische Integration. Abschließend wird die Berechnung abgeleiteter Größen erläutert und ihre Signifikanz für die Bewertung der Berechnungsergebnisse dargelegt. Etliche begleitende Beispielaufgaben mit Lösungen tragen zum Verständnis der Theorie bei.