Lernbeiträge im Rahmen einer kognitiven Architektur für die intelligente Prozessführung
Autoři
Více o knize
In dieser Arbeit werden wichtige Aspekte einer kognitiven Architektur für das Erlernen von Regelungsaufgaben beleuchtet. Dabei geht es primär um die Merkmalsextraktion, das Reinforcement Learning und das Lernmanagement im Rahmen des Wahrnehmungs-Handlungs-Zyklus. Wichtige Beiträge sind dabei verschiedene residuumsbasierte Ansätze zur hybriden Merkmalsselektion, ein Algorithmus zur Behandlung des Explorations-Exploitation-Dilemmas in kontinuierlichen Aktionsräumen, Untersuchungen zum Rewarddekompositionsproblem, sowie die Verzahnung der einzelnen Komponenten einer funktionierenden Architektur. Der experimentelle Nachweis, dass das vorgestellte System die Lösung für reale Probleme erlernen kann, wird am herausfordernden Szenario der intelligenten Feuerungsführung erbracht. Dabei wird das Gesamtsystem zur Regelung eines mit Steinkohle gefeuerten Kraftwerks eingesetzt. Die erzielten Ergebnisse übertreffen bisher existierende Systeme und auch menschliche Experten deutlich.