Knihobot

Josh Wills

    Spark Zaawansowana analiza danych
    Advanced Analytics with Spark
    • Advanced Analytics with Spark

      • 276 stránek
      • 10 hodin čtení
      4,1(64)Ohodnotit

      In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—classification, collaborative filtering, and anomaly detection among others—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find these patterns useful for working on your own data applications. Patterns include: Recommending music and the Audioscrobbler data set Predicting forest cover with decision trees Anomaly detection in network traffic with K-means clustering Understanding Wikipedia with Latent Semantic Analysis Analyzing co-occurrence networks with GraphX Geospatial and temporal data analysis on the New York City Taxi Trips data Estimating financial risk through Monte Carlo simulation Analyzing genomics data and the BDG project Analyzing neuroimaging data with PySpark and Thunder

      Advanced Analytics with Spark
    • Analiza ogromnych zbiorów danych nie musi być wolna! Apache Spark to darmowy, zaawansowany szkielet i silnik pozwalający na szybkie przetwarzanie oraz analizę ogromnych zbiorów danych. Prace nad tym projektem rozpoczęły się w 2009 roku, a już rok później Spark został udostępniony użytkownikom. Jeżeli potrzebujesz najwyższej wydajności w przetwarzaniu informacji, jeżeli chcesz uzyskiwać odpowiedź na trudne pytania niemalże w czasie rzeczywistym, Spark może być odpowiedzią na Twoje oczekiwania. Sięgnij po tę książkę i przekonaj się, czy tak jest w rzeczywistości. Autor porusza tu zaawansowane kwestie związane z analizą statystyczną danych, wykrywaniem anomalii oraz analizą obrazów. Jednak zanim przejdziesz do tych tematów, zapoznasz się z podstawami — wprowadzeniem do analizy danych za pomocą języka Scala oraz Apache Spark. Nauczysz się też przeprowadzać analizę semantyczną i zobaczysz, jak w praktyce przeprowadzić analizę sieci współwystępowań za pomocą biblioteki GraphX. Na koniec dowiesz się, jak przetwarzać dane geoprzestrzenne i genomiczne, a także oszacujesz ryzyko metodą symulacji Monte Carlo. Książka ta pozwoli Ci na wykorzystanie potencjału Apache Spark i zaprzęgnięcie go do najtrudniejszych zadań! Przykłady prezetnowane w książce obejmują: Rekomendowanie muzyki i dane Audioscrobbler Prognozowanie zalesienia za pomocą drzewa decyzyjnego Wykrywanie anomalii w ruchu sieciowym metodą grupowania według k-średnich Wikipedia i ukryta analiza semantyczna Analiza sieci współwystępowań za pomocą biblioteki GraphX Geoprzestrzenna i temporalna analiza tras nowojorskich taksówek Szacowanie ryzyka finansowego metodą symulacji Monte Carlo Analiza danych genomicznych i projekt BDG Analiza danych neuroobrazowych za pomocą pakietów PySpark i Thunder Poznaj potencjał i wydajność Apache Spark!

      Spark Zaawansowana analiza danych