Sebastian Raschka Pořadí knih
Tento autor se hluboce ponořuje do světa datové vědy a strojového učení a s nadšením odhaluje složité vzorce v datech. Jeho práce se soustředí na vyvozování hlubokých závěrů prostřednictvím technik dolování dat a strojového učení, zejména pro prediktivní modelování. Velký zastánce spolupráce a konceptu open source, věří v sílu sdílení znalostí a nástrojů pro vzájemný růst. V současnosti si zdokonaluje analytické dovednosti jako doktorand, kde se zaměřuje na vývoj vysoce efektivního softwaru pro virtuální screening v oblasti počítačem podporovaného objevování léčiv a na inovativní přístupy k dokování protein-ligand.





- 2024
- 2022
Machine Learning with PyTorch and Scikit-Learn
Develop machine learning and deep learning models with Python
- 774 stránek
- 28 hodin čtení
Focusing on machine and deep learning, this guide offers a thorough exploration of PyTorch, known for its user-friendly coding framework. It is part of a bestselling series, providing readers with practical insights and techniques to effectively implement machine learning concepts. Ideal for both beginners and experienced practitioners, the book emphasizes hands-on learning and real-world applications, making complex topics accessible and engaging.
- 2021
Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn
Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics
- 2018
Die zweite Auflage dieses Buchs behandelt die Anwendung fortschrittlicher statistischer Modelle des Machine Learnings und die wichtigsten Algorithmen sowie Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, TensorFlow, Matplotlib, Pandas und Keras. Machine Learning und Predictive Analytics revolutionieren die Unternehmenswelt, indem sie es ermöglichen, Trends und Muster in komplexen Daten zu erkennen, was für den langfristigen Geschäftserfolg entscheidend ist. Die Autoren erläutern den Einsatz von Machine-Learning- und Deep-Learning-Algorithmen anhand praktischer Beispiele und bieten umfassende Einblicke in leistungsfähige Python-Bibliotheken. Sie zeigen, wie Python genutzt werden kann, um grundlegende Erkenntnisse zu gewinnen und komplexe Algorithmen zu entwickeln. Zu den Themen gehören das Trainieren von Lernalgorithmen für Klassifizierungen, Regressionsanalysen zur Ergebnisprognose, Clusteranalysen zur Entdeckung verborgener Muster, Deep-Learning-Verfahren zur Bilderkennung, effektive Datenvorverarbeitung, Dimensionsreduktion zur Datenkomprimierung, das Training neuronaler Netze mit TensorFlow, Ensemble Learning, die Integration von Machine-Learning-Modellen in Webanwendungen sowie Stimmungsanalysen in sozialen Netzwerken und die Modellierung sequenzieller Daten mit rekurrenten neuronalen Netzen.
- 2015
Python Machine Learning
- 622 stránek
- 22 hodin čtení
Machine learning is eating the software world. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Modernized and extended to include the latest open source technologies, including scikit-learn, Keras, and TensorFlow, Python Machine Learning Second Edition offers the practical knowledge and techniques you need to create effective machine learning and deep learning applications in Python. Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms, before progressing to advanced topics in data analysis. This book combines the theoretical principles of machine learning with a hands-on coding approach for a thorough grasp of machine learning theory and implementation using Python.