Přes Balíkovnu doručujeme za 49 Kč

Knihobot
Knihu momentálně nemáme skladem

Intersections of Hirzebruch-Zagier divisors and CM cycles

Autoři

Více o knize

This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.

Parametry

ISBN
9783642239786
Nakladatelství
Springer

Kategorie

Varianta knihy

2012

Nákup knihy

Jakmile ji vyčmucháme, pošleme vám e-mail.