Tutorium Mathematik für Einsteiger
Autoři
Více o knize
Dieses Buch erleichtert Studienanfängern den Einstieg in die Hochschulmathematik und kann Unentschlossenen bei der Wahl des Studienfaches helfen. Vor allem werden ausführliche Lösungen zu den Aufgaben aus dem Buch „Mathematik für Einsteiger“ präsentiert, aber es wird auch der mathematische Hintergrund erläutert und dabei sehr viel Wert auf Motivationen, ausführliche Erklärungen und Beispiele gelegt. Man kann das Buch ganz unabhängig lesen oder als Begleitlektüre zu einem beliebigen Vorkurs oder Einführungsbuch benutzen. Am Anfang steht eine Einführung in Logik und Mengenlehre. In der damit erworbenen Sprache wird dann Mathematik aus schulischen Grund- und Leistungskursen neu formuliert, unter anderem die elementare Algebra, der Umgang mit Grenzwerten, Geometrie, Trigonometrie, Vektorrechnung und Differential- und Integralrechnung. Auf Beweise, die man in der angegebenen Literatur finden kann, wird in der Regel verzichtet, aber dafür werden Beweismethoden und Rezepte zur Ideenfindung in den Beispielen sehr ausführlich angesprochen.
Nákup knihy
Tutorium Mathematik für Einsteiger, Klaus Fritzsche
- Jazyk
- Rok vydání
- 2016
Doručení
Platební metody
2021 2022 2023
Navrhnout úpravu
- Titul
- Tutorium Mathematik für Einsteiger
- Jazyk
- německy
- Autoři
- Klaus Fritzsche
- Vydavatel
- Springer Spektrum
- Rok vydání
- 2016
- ISBN10
- 3662489090
- ISBN13
- 9783662489093
- Série
- Lehrbuch
- Kategorie
- Učebnice
- Anotace
- Dieses Buch erleichtert Studienanfängern den Einstieg in die Hochschulmathematik und kann Unentschlossenen bei der Wahl des Studienfaches helfen. Vor allem werden ausführliche Lösungen zu den Aufgaben aus dem Buch „Mathematik für Einsteiger“ präsentiert, aber es wird auch der mathematische Hintergrund erläutert und dabei sehr viel Wert auf Motivationen, ausführliche Erklärungen und Beispiele gelegt. Man kann das Buch ganz unabhängig lesen oder als Begleitlektüre zu einem beliebigen Vorkurs oder Einführungsbuch benutzen. Am Anfang steht eine Einführung in Logik und Mengenlehre. In der damit erworbenen Sprache wird dann Mathematik aus schulischen Grund- und Leistungskursen neu formuliert, unter anderem die elementare Algebra, der Umgang mit Grenzwerten, Geometrie, Trigonometrie, Vektorrechnung und Differential- und Integralrechnung. Auf Beweise, die man in der angegebenen Literatur finden kann, wird in der Regel verzichtet, aber dafür werden Beweismethoden und Rezepte zur Ideenfindung in den Beispielen sehr ausführlich angesprochen.