Hierarchical neural networks for image interpretation
Autoři
Parametry
Více o knize
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
Nákup knihy
Hierarchical neural networks for image interpretation, Sven Behnke
- Jazyk
- Rok vydání
- 2003
Doručení
Platební metody
2021 2022 2023
Navrhnout úpravu
- Titul
- Hierarchical neural networks for image interpretation
- Jazyk
- německy
- Autoři
- Sven Behnke
- Vydavatel
- Springer
- Rok vydání
- 2003
- Vazba
- měkká
- ISBN10
- 3540407227
- ISBN13
- 9783540407225
- Série
- Lecture notes in computer science
- Kategorie
- Počítače, IT, programování
- Anotace
- Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.