Knihobot
Knihu momentálně nemáme skladem

Nonlinear state and parameter estimation of spatially distributed systems

Autoři

Více o knize

In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.

Varianta knihy

2009, měkká

Nákup knihy

Kniha aktuálně není skladem.