From dynamic simulation to optimal design and control of adsorption energy systems
Autoři
Více o knize
Worldwide heating and cooling demand will rise significantly over the next decades. Adsorption energy systems, namely adsorption chillers and heat pumps, have the potential to provide parts of this demand environmentally friendly by employing solar heat or waste heat. Designing adsorption energy systems is challenging due to the following reasons: (1) intrinsic dynamics, (2) multi-objectiveness, (3) large variety in design parameters, (4) strong influence of control, and (5) a large impact of input parameters such as temperatures. In many studies, these effects have been investigated separately by conducting sensitivity analyses. To explore also the interactions between design, control, and input parameters, a simultaneous optimisation approach is presented and exemplified in this thesis. Key to simultaneous optimisation are fast simulation models which capture the effects of all optimisation parameters. To quickly model new advanced adsorption energy systems, an object-oriented, dynamic-model library is developed in the programming language Modelica.