Knihu momentálně nemáme skladem

Model-based optimization of setup parameters for dimensional measurements on monomaterial and multimaterial workpieces in industrial computed tomography
Autoři
Parametry
Více o knize
This manuscript presents a methodology for optimizing setup parameters for dimensional measurements in industrial computed tomography (CT). The methodology relates the influence of setup parameters on measurement uncertainty to five conditions on scan quality. A set of models for optimizing setup parameters was developed and implemented into a software application. Experimental investigations showed that predicted setup parameters are optimal for the vast majority of the considered features.
Nákup knihy
Model-based optimization of setup parameters for dimensional measurements on monomaterial and multimaterial workpieces in industrial computed tomography, Andrea Buratti
- Jazyk
- Rok vydání
- 2018
Jakmile ji vyčmucháme, pošleme vám e-mail.
Doručení
Platební metody
Navrhnout úpravu
- Titul
- Model-based optimization of setup parameters for dimensional measurements on monomaterial and multimaterial workpieces in industrial computed tomography
- Jazyk
- anglicky
- Autoři
- Andrea Buratti
- Vydavatel
- Apprimus Verlag
- Rok vydání
- 2018
- ISBN10
- 3863596439
- ISBN13
- 9783863596439
- Kategorie
- Skripta a vysokoškolské učebnice
- Anotace
- This manuscript presents a methodology for optimizing setup parameters for dimensional measurements in industrial computed tomography (CT). The methodology relates the influence of setup parameters on measurement uncertainty to five conditions on scan quality. A set of models for optimizing setup parameters was developed and implemented into a software application. Experimental investigations showed that predicted setup parameters are optimal for the vast majority of the considered features.