Knihu momentálně nemáme skladem
Více o knize
Focusing on the quantitative approximation capabilities of artificial neural networks, this monograph explores the approximation properties of sigmoidal and hyperbolic tangent operators. It analyzes how well these networks approximate the identity-unit operator in both univariate and multivariate scenarios, across bounded and unbounded domains. The study employs inequalities and considers the modulus of continuity of the functions involved, addressing both real and complex cases to provide a comprehensive understanding of approximation rates.
Nákup knihy
Intelligent Systems: Approximation by Artificial Neural Networks, George A. Anastassiou
- Jazyk
- Rok vydání
- 2011
- product-detail.submit-box.info.binding
- (pevná)
Jakmile ji vyčmucháme, pošleme vám e-mail.
Doručení
Platební metody
Navrhnout úpravu
- Titul
- Intelligent Systems: Approximation by Artificial Neural Networks
- Jazyk
- anglicky
- Autoři
- George A. Anastassiou
- Vydavatel
- Springer, Berlin
- Rok vydání
- 2011
- Vazba
- pevná
- Počet stran
- 108
- ISBN13
- 9783642214301
- Kategorie
- Matematika
- Anotace
- Focusing on the quantitative approximation capabilities of artificial neural networks, this monograph explores the approximation properties of sigmoidal and hyperbolic tangent operators. It analyzes how well these networks approximate the identity-unit operator in both univariate and multivariate scenarios, across bounded and unbounded domains. The study employs inequalities and considers the modulus of continuity of the functions involved, addressing both real and complex cases to provide a comprehensive understanding of approximation rates.