Knihobot

Can Mathematics Be Proved Consistent?

Gödel's Shorthand Notes & Lectures on Incompleteness

Parametry

  • 276 stránek
  • 10 hodin čtení

Více o knize

Kurt Gödel's groundbreaking work in 1931 revealed profound limitations in formal mathematical systems, particularly through his first incompleteness theorem. He demonstrated that in any sufficiently complex system containing elementary arithmetic, there exist true statements that cannot be proven within that system. This challenged the notion that all mathematical truths could be derived from a finite set of rules. Gödel's insights not only transformed mathematics but also raised critical questions about the consistency and completeness of mathematical proofs, leading to further exploration in the field.

Vydání

Nákup knihy

Can Mathematics Be Proved Consistent?, Jan von Plato

Jazyk
Rok vydání
2021
product-detail.submit-box.info.binding
(měkká)
Jakmile se objeví, pošleme e-mail.

Doručení

Platební metody

Nikdo zatím neohodnotil.Ohodnotit