Knihobot
Knihu momentálně nemáme skladem

Optimization - theory and applications

Autoři

Více o knize

Inhaltsverzeichnis§ 1 Introduction, Examples, Survey.1.1 Optimization problems in elementary geometry.1.2 Calculus of variations.1.3 Approximation problems.1.4 Linear programming.1.5 Optimal Control.1.6 Survey.1.7 Literature.§ 2 Linear Programming.2.1 Definition and interpretation of the dual program.2.2 The FARKAS-Lemma and the Theorem of CARATHEODORY.2.3 The strong duality theorem of linear programming.2.4 An application: relation between inradius and width of a polyhedron.2.5 Literature.§ 3 Convexity in Linear and Normed Linear Spaces.3.1 Separating convex sets in linear spaces.3.2 Separation of convex sets in normed linear spaces.3.3 Convex functions.3.4 Literature.§ 4 Convex Optimization Problems.4.1 Examples of convex optimization problems.4.2 Definition and motivation of the dual program. The weak duality theorem.4.3 Strong duality, KUHN-TUCKER saddle point theorem.4.4 Quadratic programming.4.5 Literature.§ 5 Necessary Optimality Conditions.5.1 GATEAUX and FRECHET Differential.5.2 The Theorem of LYUSTERNIK.5.3 LAGRANGE multipliers. Theorems of KUHN-TUCKER and F. JOHN type.5.4 Necessary optimality conditions of first order in the calculus of variations and in optimal control theory.5.5 Necessary and sufficient optimality conditions of second order.5.6 Literature.§ 6 Existence Theorems for Solutions of Optimization Problems.6.1 Functional analytic existence theorems.6.2 Existence of optimal controls.6.3 Literature.Symbol Index.

Parametry

ISBN
9783528085940
Nakladatelství
Vieweg

Kategorie

Varianta knihy

1984

Nákup knihy

Kniha aktuálně není skladem.